SIEMENS

Course Name: Additive Manufacturing- An Advanced Level Course

Course Duration: 40 Hrs.

Course overview

o Intended audience

This course is an Advanced level course suited for designers, engineers, manufacturing engineers, CAD/CAM managers, and system managers who need to manage use NX software and Projet MJP 2500 PLUS 3D Printer.

o Prerequisites

Education: Diploma completed or Degree 2nd year completed in any one of following Streams:

• Aeronautical, Automobile, Civil, Industrial, Marine, Mechanical, Mechatronics, Metallurgy, Production and Manufacturing Engineering.

Software: Siemens NX-Basics, basic knowledge on 3D Printing.

Should Complete Additive Manufacturing Intermediate Course.

Course objectives

After successfully completing this course, you should be able to:

- Gain basic concepts of Design for Additive Manufacturing (DfAM)
- Understand Applications of AM in different fields like Medical, Automobile, and Aerospace
- Setup built volume of the Projet MJP 2500 plus in 3DSprint software.

o Course Contents

- 1. Introduction to the Industrial Application of Additive Manufacturing
- 2. Overview of Design for Additive Manufacturing (DfAM) Guidelines
- 3. Industrial Application in the Automobile Field
 - AM Process Flow for Automobile Models
 - Principles of DfAM: Topology Optimization, Lattice Structures, Lightweight Design
 - Software Tools for AM Design (e.g., Siemens NX)
 - Design Considerations Specific to Automotive Parts: Strength, Durability, Thermal Resistance
 - Examples: Lightweight Brackets, Ducting, Customized Interior Components
- 4. Industrial Application in the Medical Field
 - AM Process Flow for Medical Models
 - Open Source Software Tools for Medical Implant Design (e.g., 3D Slicer, Pro Surgical 3D)
 - Customization and Patient-Specific Device Design
 - Examples: Dental Crowns, Surgical Guides, Orthopedic Implants
- 5. Industrial Application in the Aerospace Field
 - AM Process Flow for Aerospace Models
 - Principles of DfAM: Topology Optimization, Lattice Structures, Lightweight Design
 - Software Tools for AM Design (e.g., Siemens NX)
 - Design Considerations for Aerospace Parts
 - Examples: Airbus A320 Nacelle Hinge Bracket
- 6. Built Volume Setup of Projet MJP 2500 Plus
 - Practical Sessions in 3DSprint Software
- 7. 3D Printing of Approved Designs on Projet MJP 2500 Plus
- 8. Post-Processing of MJP Printed Parts
- 9. Summary