M.Sc. MATHEMATICS

RULES AND REGULATIONS
SCHEME OF INSTRUCTION AND SYLLABI
of
P.G. Programs
M.Sc. APPLIED MATHEMATICS

COURSE STRUCTURE

I Year I Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA5101</td>
<td>Real Analysis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>MA5102</td>
<td>Discrete Mathematics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>MA5103</td>
<td>Linear Algebra</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>MA5104</td>
<td>Ordinary Differential Equations</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>MA5105</td>
<td>Programming and Data Structures</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>MA5106</td>
<td>Numerical Analysis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>MA5107</td>
<td>Programming Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>18</td>
<td>6</td>
<td>3</td>
<td>26</td>
</tr>
</tbody>
</table>

I Year II Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA5151</td>
<td>Integral and Discrete Transforms</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>MA5152</td>
<td>Probability and Statistics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>MA5153</td>
<td>Partial Differential Equations</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>MA5154</td>
<td>Topology</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>MA5155</td>
<td>Mechanics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>MA5156</td>
<td>Elective - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>MA5191</td>
<td>Computing Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>18</td>
<td>5</td>
<td>5</td>
<td>26</td>
</tr>
</tbody>
</table>
II Year I Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>No.</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA6101</td>
<td>Mathematical Programming</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MA6102</td>
<td>Fluid Dynamics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MA6103</td>
<td>Numerical Solution of Differential Equations</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MA6104</td>
<td>Complex Analysis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MA6105</td>
<td>Functional Analysis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Elective - II</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MA6106</td>
<td>Mathematical Programming Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MA6141</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18 5 5 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II Year II Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>No.</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA6151</td>
<td>Operations Research</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MA6152</td>
<td>Finite Element Method</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Elective - III</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Elective - IV</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MA6153</td>
<td>Software Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MA6192</td>
<td>Comprehensive Viva</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MA6199</td>
<td>Term Project Work</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12 2 11 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total number of credits for the course is 100

LIST OF ELECTIVES

Elective - I
- MA 5161 Methods of Applied Mathematics
- MA 5162 Mathematical Modelling
- MA 5261 Symbolic Computing

Elective - II
- MA 6111 Multivariate Analysis
- MA 6112 Wavelet Analysis
- MA 6113 Finite Volume Methods

Elective - III and IV
- MA 6161 Measure and Integration
- MA 6162 Fuzzy Mathematics and Applications
- MA 6163 Computational Fluid Dynamics
- MA 6164 Bio Fluid Mechanics
- MA 6262 Multi-objective Programming
- MA 6263 Financial Mathematics
Syllabus

M.Sc. APPLIED MATHEMATICS

MA5101
REAL ANALYSIS
(3-1-0)4

Basic Topology - metric spaces - compact sets - perfect sets - connected sets - Riemann Stieltje's integral
- Improper integrals - Uniform convergence of series - Power series - Fourier series.

Reading:

MA5102
DISCRETE MATHEMATICS
(3-1-0)4

Sets and propositions - Permutations, combinations, numeric functions, generating functions - Recurrence
relations and recursive algorithms - Relations and functions - Boolean algebra - Graphs and planar graphs,
multigraphs and weighted graphs, Trees and cut-sets.

Reading:
3. Tremblay and Manohar, *Discrete Mathematical Structures with Applications to Computer Science*,

MA5103
LINEAR ALGEBRA
(3-1-0)4

Systems of linear equations - Moore-Penrose Generalised inverse - Vector spaces - subspaces -
characteristic values and vectors - Cayley Hamilton theorem - annihilating polynomial - invariant subspaces-
Simultaneous triangularisation - simultaneous diagonalisation - Jordan form - inner product spaces - unitary
and normal operators - bilinear forms.

Reading:
Delhi, 1991.

MA5104
ORDINARY DIFFERENTIAL EQUATIONS
(3-1-0)4

First order and higher order differential equations - method of variation of parameters - linear equations with
variable coefficients - Legendre and Bessel equations - systems of differential equations - non-homogeneous
linear systems - successive approximation - Picard's theorem - nonuniqueness of solutions - continuous
dependence on initial conditions.

Reading:
2006.
Press, New Delhi, 1981.

MA5105
PROGRAMMING AND DATA STRUCTURES
(3-1-0)4

C-language : operators and expressions, control structures, functions, header files, scope rules, pointers
and arrays, address arithmetic, command line arguments, structures - Stacks and Recursion - Lists -
Searching and Sorting.
Reading:

MA5106
NUMERICAL ANALYSIS

Reading:

MA5107
PROGRAMMING LABORATORY

Simple programs in C language using pointers, String manipulation, File processing, Program to implement Stacks and Queues, conversion of infix to postfix expression, Programs on Recursion, Programs for Searching, Programs for sorting.

MA5151
INTEGRAL AND DISCRETE TRANSFORMS

Reading:

MA5152
PROBABILITY AND STATISTICS

Probability - Bayes' Theorem - probability distributions with discrete and continuous random variables - joint probability mass function - testing of hypothesis for large and small samples - chi-square test linear correlation and linear regression - rank correlation - correlation of bivariate frequency distribution.

Reading:

MA5153
PARTIAL DIFFERENTIAL EQUATIONS

Formulation - linear and quasi-linear first order partial differential equations - Paffian equation - Equations of higher order: Method of solution for the case of constant coefficients - method of solution by separation of variables: Laplace's equation, Wave equation, Diffusion equation.

Reading:

MA5154
TOPOLOGY

Reading

MA5155
MECHANICS
(3-1-0)4

- Systems of particles: Linear and Angular momentum and rate of change of angular momentum of a system of particles
- Rigid body: Moments of inertia; Kinetic energy and angular momentum
- Euler's motion under no forces; Eulerian angles; Lagrange's and Hamilton's equations of motion
- Elementary problems: motion of a top.

Reading

MA5161
METHODS OF APPLIED MATHEMATICS
(3-0-0)3

- Tensor Analysis: covariant and contravariant vectors, contraction, second and higher order tensors, quotient law, covariant and intrinsic derivatives, geodesics
- Integral equations: connection with differential equations, integral equations of the convolution type
- Green's functions: Non homogeneous boundary value problems, one dimensional Green's function.

Reading

MA5162
MATHEMATICAL MODELLING
(3-0-0)3

- Introduction - Microbial population models
- Single species and two species population models
- Multispecies population models
- Optimal exploitation models
- Epidemic models
- Models in genetics
- Mathematical models in pharmacokinetics
- Models for blood flows.

Reading

MA5261
SYMBOLIC COMPUTING
(3-0-0)3

- Introduction to Mathematica, Programming in Mathematica
- Numeric calculation using Mathematica
- Symbolic computing with Mathematica
- Programming in MATLAB, Built-in functions
- Application to Linear algebra, curve fitting and interpolation, numerical integration and solving Ordinary differential equations.

Reading

MA5156
COMPUTING LABORATORY
(0-0-3)2

- Programs for solution of quadratic equation
- Solution of algebraic and transcendental equations
- Gauss-Seidel method
- Inverse of a matrix
- Gaussian elimination
- Numerical integration
- Euler's and modified Euler's methods
- Runge-Kutta methods
- Tridiagonal system by Thomas algorithm.

MA6101
MATHEMATICAL PROGRAMMING
(3-1-0)4

- Formulation of a LPP
- Graphical solution
- Simplex method
- Revised simplex method
- Duality theory
- Dual simplex method
- Sensitivity analysis
- Parametric programming
- Transportation problem
- Assignment problem
- Travelling salesman problem
- Integer Programming
- Dynamic programming.
Reading:

MA6102

FLUID DYNAMICS

(3-1-0)4

Kinematics of fluids in motion - Equations of motion of fluid - Bernoulli's equation - some flows involving
axial symmetry - some special two-dimensional flows - Some three dimensional flows - axisymmetric flows -
Stokes' stream function - Viscous flows - the Navier-Stokes' equations of motion of viscous fluid - Steady
viscous flow in tubes of uniform cross section.

Reading:

MA6103

NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

(3-1-0)4

Multistep Methods for Initial Value problems, Quasilinearization. Shooting methods - Finite Difference Methods:
Parabolic equations, Hyperbolic Equations, Laplace equation, Poisson equation, ADI methods.

Reading:

MA6104

COMPLEX ANALYSIS

(3-1-0)4

Functions of a complex variable - analytic functions - complex integration - Taylor's theorem - Laurent's
theorem - Cauchy's residue theorem - Conformal mapping - Bilinear transformation - Transformation by
elementary functions - representation of a polygon on a half plane - representation of any region on a circle.

Reading:

MA6105

FUNCTIONAL ANALYSIS

(3-1-0)4

Algebraic systems: Groups, rings, structure of rings, linear spaces, linear transformation algebras - Banach
spaces: Hahn-Banach theorem - the open mapping theorem - the conjugate of an operator - Hilbert spaces:
Orthogonal complements - orthonormal sets - conjugate space H*, adjoint of an operator - self-adjoint
operators - Normal and unitary operators - projections.

Reading:

MA6111

MULTIVARIATE ANALYSIS

(3-0-0)3

Multiple regression analysis, Multiple correlation, Partial Correlation, Multivariate analysis of variance -
Differences between MANOVA and discriminant analysis - conjoint analysis - canonical correlation analysis -
cluster analysis - cluster analysis decision process - multidimensional scaling - a decision framework for
perceptual mapping - correspondence analysis.

Reading:
MA6112 WAVELET ANALYSIS (3-0-0)3
Wavelet transform - Haar wavelet expansion: Haar functions and Haar series, Haar function representation of Brownian motion - Multiresolution analysis - scaling functions, from scaling function to MRA - Wavelets in several variables: tensor product of wavelets, general formulation of MRA and wavelets in Rd.
Reading:

MA6113 FINITE VOLUME METHODS (3-0-0)3
Introduction - Obtaining the Integral Form from the Differential Form - Finite Volume Meshes - Discretising the Semi-Integral Equation - Implementation of Finite Volume Schemes - The Shallow Water Equations - General FVS for the SWE - FVS for the 2D SWE on a Structured Mesh - Heuristic Time Step for a 2D SWE FVS.
Reading:

MA6106 MATHEMATICAL PROGRAMMING LABORATORY (0-0-3)2
C language programs for Simplex method, Two phase method, Big-M method, Revised simplex method, Transportation algorithm, Dual simplex method, Assignment problem.

MA6151 OPERATIONS RESEARCH (3-1-0)4
Nonlinear programming problem - Kuhn-Tucker conditions - Quadratic programming - min cost flow problem - max flow problem - CPM/PERT. Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.
Reading:

MA6152 FINITE ELEMENT METHOD (3-1-0)4
Reading:

MA6161 MEASURE AND INTEGRATION (3-0-0)3
Reading:
MA6162 **FUZZY MATHEMATICS AND APPLICATIONS** (3-0-0)3

Crisp set theory - Fuzzy set theory - Propositional Logic - Predicate Logic - Fuzzy Relations - Fuzzy Logic - Switching functions and Switching circuits - Applications of fuzzy mathematics.

Reading:

MA6163 **COMPUTATIONAL FLUID DYNAMICS** (3-0-0)3

Reading:

MA6164 **BIO-FLUID MECHANICS** (3-0-0)3

Fundamental concepts of Biomechanics - Cardiovascular system : models on blood flow, flow in large blood vessels, microcirculation, pulsatile flow, stenotic region flow - peristaltic transport under long wave length approximation, peristaltic flow for small amplitudes - Flow in Renal tubules.

Reading:

MA6262 **MULTI OBJECTIVE PROGRAMMING** (3-0-0)3

Multiple Criteria Decision Making problems - introduction to various methods with no articulation, apriori articulation, progressive articulation and posteriori articulation of preference information - optimization of multiple objective linear programming and non-linear programming problems. Goal programming.

Reading:

MA6263 **FINANCIAL MATHEMATICS** (3-0-0)3

Hedging and pricing by arbitrage in discrete time models, Setting of binomial tree models - conditional expectation, martingale, change of measure, and representation - Brownian motion - Models for the interest rate in the national and international markets. Mathematical models of bond and stock prices, other derivative securities.

Reading:

MA6153 **SOFTWARE LABORATORY** (0-0-3)2

Software packages (with a menu driven basis) have to be developed for the topics covered in the earlier semesters.
I Year II Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA5101</td>
<td>Real Analysis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>MA5102</td>
<td>Discrete Mathematics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>MA5103</td>
<td>Linear Algebra</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>MA5104</td>
<td>Ordinary Differential Equations</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>MA5105</td>
<td>Programming and Data Structures</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>MA5106</td>
<td>Numerical Analysis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>MA5107</td>
<td>Programming Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>18</td>
<td>6</td>
<td>3</td>
<td>26</td>
</tr>
</tbody>
</table>

I Year II Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA5151</td>
<td>Integral and Discrete Transforms</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>MA5152</td>
<td>Probability and Statistics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>MA5153</td>
<td>Partial Differential Equations</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>MA5251</td>
<td>Design and Analysis of Algorithms</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>MA5252</td>
<td>OOP with C++</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Elective - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>MA5253</td>
<td>OOP with C++ Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>MA5291</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>18</td>
<td>5</td>
<td>5</td>
<td>26</td>
</tr>
</tbody>
</table>
II Year I Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>No.</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA6101</td>
<td>Mathematical Programming</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MA6102</td>
<td>Fluid Dynamics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MA6103</td>
<td>Numerical Solution of Differential Equations</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MA6104</td>
<td>Complex Analysis</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MA6201</td>
<td>Data Base Management Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Elective - II</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MA6202</td>
<td>DBMS Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MA6241</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>18</td>
<td>5</td>
<td>5</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II Year II Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>No.</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA6151</td>
<td>Operations Research</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MA6152</td>
<td>Finite Element Method</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Elective - III</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Elective - IV</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MA6253</td>
<td>Software Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MA6292</td>
<td>Comprehensive Viva</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MA6299</td>
<td>Term Project Work</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>12</td>
<td>2</td>
<td>11</td>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total number of credits for the course is 100

LIST OF ELECTIVES

Elective - I

- MA 5261 Symbolic Computing
- MA 5262 Cryptography
- MA 5162 Mathematical Modelling

Elective - II

- MA 6211 Computer Graphics
- MA 6111 Multivariate Analysis
- MA 6113 Finite Volume Methods

Elective - III and IV

- MA 6261 Theory of Automata
- MA 6262 Multi-objective Programming
- MA 6263 Financial Mathematics
- MA 6264 Management Information Systems
- MA 6162 Fuzzy Mathematics and Applications
- MA 6163 Computational Fluid Dynamics
M.Sc. MATHEMATICS AND SCIENTIFIC COMPUTING

MA5101 REAL ANALYSIS (3-1-0)4
Basic Topology - metric spaces - compact sets - perfect sets - connected sets - Riemann Stieltje’s integral - Improper integrals - Uniform convergence of series - Power series - Fourier series.
Reading:

MA5102 DISCRETE MATHEMATICS (3-1-0)4
Sets and propositions - Permutations, combinations, numeric functions, generating functions - Recurrence relations and recursive algorithms - Relations and functions - Boolean algebra - Graphs and planar graphs, multigraphs and weighted graphs, Trees and cut-sets.
Reading:

MA5103 LINEAR ALGEBRA (3-1-0)4
Reading:

MA5104 ORDINARY DIFFERENTIAL EQUATIONS (3-1-0)4
Reading:

MA5105 PROGRAMMING AND DATA STRUCTURES (3-1-0)4
C-language: operators and expressions, control structures, functions, header files, scope rules, pointers and arrays, address arithmetic, command line arguments, structures - Stacks and Recursion - Lists - Searching and Sorting.
Reading:

MA5106 NUMERICAL ANALYSIS

Reading:

MA5107 PROGRAMMING LABORATORY

Simple programs in C languages using pointers, String manipulation, File processing, Program to implement Stacks and Queues, conversion of infix to post fix expression, Programs on Recursion, Programs for Searching, Programs for sorting.

MA5151 INTEGRAL AND DISCRETE TRANSFORMS

Reading:

MA5152 PROBABILITY AND STATISTICS

Probability - Bayes' Theorem - probability distributions with discrete and continuous random variables - joint probability mass function - testing of hypothesis for large and small samples - chi-square test linear correlation and linear regression - rank correlation - correlation of bivariate frequency distribution.

Reading:

MA5153 PARTIAL DIFFERENTIAL EQUATIONS

Formulation - linear and quasi-linear first order partial differential equations - Paffian equation - Equations of higher order: Method of solution for the case of constant coefficients - method of solution by separation of variables: Laplace's equation, Wave equation, Diffusion equation.

Reading:

MA5251 DESIGN AND ANALYSIS OF ALGORITHMS

Reading:

MA5252 **OOP WITH C++** (3-1-0)4
Basic concepts of object-oriented programming - Structure of C++ program - Functions in C++ - Function overloading - C++ Program with class - Nesting of member functions - Constructors and Destructors - Operator overloading - Inheritance - Defining derived classes - Pointers, Virtual functions and Polymorphism.

Reading:

MA5261 **SYMBOLIC COMPUTING** (3-0-0)3

Reading:

MA5262 **CRYPTOGRAPHY** (3-0-0)3
Classical Cryptography - Secret Key Cryptosystems - Stream ciphers; Public Key Cryptosystems - Elliptic curves - basic facts; elliptic-curve cryptosystem; Digital Signature schemes; Zero-knowledge protocols, one-way functions; Advanced protocols for different applications, Copyright protection; Current trends in Cryptography.

Reading:

MA5162 **MATHEMATICAL MODELLING** (3-0-0)3
Introduction - Microbial population models - Single species and two species population models - multispecies population models - optimal exploitation models - epidemic models - models in genetics - mathematical models in pharmacokinetics - models for blood flows.

Reading:

MA5253 **OOP WITH C++ LABORATORY** (0-0-3)2
Programs with class, objects as Function arguments, Friendly functions, Constructors and Destructors, Operator overloading - overloading unary operators - overloading binary operators. Programs illustrating the implementation of various forms of inheritance - Programs for implementation of multiple inheritance.

MA6101 **MATHEMATICAL PROGRAMMING** (3-1-0)4
Reading:

MA6102 FLUID DYNAMICS (3-1-0)4

Kinematics of fluids in motion - Equations of motion of fluid - Bernoulli's equation - some flows involving axial symmetry - some special two-dimensional flows - Some three dimensional flows - axisymmetric flows - Stokes' stream function - Viscous flows - the Navier-Stokes' equations of motion of viscous fluid - Steady viscous flow in tubes of uniform cross section.

Reading:

MA6103 NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS (3-1-0)4

Reading:

MA6104 COMPLEX ANALYSIS (3-1-0)4

Functions of a complex variable - analytic functions - complex integration - Taylor's theorem - Laurent's theorem - Cauchy's residue theorem - Conformal mapping - Bilinear transformation - Transformation by elementary functions - representation of a polygon on a half plane - representation of any region on a circle.

Reading:

MA6201 DATA BASE MANAGEMENT SYSTEMS (3-1-0)4

Data models, Data Independence, Database manager, Database Administrator - Entities and relationships, Mapping constraints - Structure of relational database - SQL - Domain constraints - First, Second and Third, Fourth and fifth normal forms - Structure of query optimizer - High performance transaction systems, long duration transactions.

Reading:

MA6211 COMPUTER GRAPHICS (3-0-0)3

Reading:
MA6111 MULTIVARIATE ANALYSIS (3-0-0)3
Multiple regression analysis, Multiple correlation, Partial Correlation, Multivariate analysis of variance - Differences between MANOVA and discriminant analysis - conjoint analysis - canonical correlation analysis - cluster analysis - cluster analysis decision process - multidimensional scaling - a decision framework for perceptual mapping - correspondence analysis.
Reading:

MA6113 FINITE VOLUME METHODS (3-0-0)3
Introduction - Obtaining the Integral Form from the Differential Form - Finite Volume Meshes - Discretising the Semi-Integral Equation - Implementation of Finite Volume Schemes - The Shallow Water Equations - General FVS for the SWE - FVS for the 2D SWE on a Structured Mesh - Heuristic Time Step for a 2D SWE FVS.
Reading:

MA6202 DBMS LABORATORY (0-0-3)2
DDL, DML, DCL Statements Built in functions and Aggregate functions - SQL: Ordinary Query, Sub Query, Correlated Sub Query PL/SQL, Data types, Control Structures, Error handling mechanism, Subprograms - Stored procedures, Data base triggers and exception - RDBMS: Building forms using form designers, triggers.

MA6151 OPERATIONS RESEARCH (3-1-0)4
Nonlinear programming problem - Kuhn-Tucker conditions - Quadratic programming - min cost flow problem - max flow problem - CPM/PERT. Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.
Reading:

MA6152 FINITE ELEMENT METHOD (3-1-0)4
Reading:

MA6261 THEORY OF AUTOMATA (3-0-0)3
Finite Automata Deterministic finite automata (DFA), Non-deterministic finite automata (NFA), Non-deterministic finite automata with moves (NFA-), Equivalence of DFA, NFA and NFA-, Turing Machines: Turing machine model, example, Modification of Turing machines, Church’s hypothesis and Non-deterministic Turing machines.
Reading:
MA6262
MULTI OBJECTIVE PROGRAMMING
(3-0-0)3

Multiple Criteria Decision Making problems - introduction to various methods with no articulation, apriori articulation, progressive articulation and posteriori articulation of preference information - optimization of multiple objective linear programming and non-linear programming problems. Goal programming.

Reading:

MA6263
FINANCIAL MATHEMATICS
(3-0-0)3

Hedging and pricing by arbitrage in discrete time models, Setting of binomial tree models - conditional expectation, martingale, change of measure, and representation - Brownian motion - Models for the interest rate in the national and international markets. Mathematical models of bond and stock prices, other derivative securities.

Reading:

MA6264
MANAGEMENT INFORMATION SYSTEMS
(3-0-0)3

Reading:

MA6162
FUZZY MATHEMATICS AND APPLICATIONS
(3-0-0)3

Crisp set theory - Fuzzy set theory - Propositional Logic - Predicate Logic - Fuzzy Relations - Fuzzy Logic - Switching functions and Switching circuits - Applications of fuzzy mathematics.

Reading:

MA6163
COMPUTATIONAL FLUID DYNAMICS
(3-0-0)3

Basic Equations of Fluid Dynamics - Equations expressed in conservative form. Inviscid Flows. Incompressible potential flows; Viscous Fluid flows; pipe and open channel flows; generalized Rayleigh problem; starting flow in a channel problem; Numerical solution of a bi-harmonic equations-Stokes flows.

Reading:

MA6253
SOFTWARE AND SIMULATION LABORATORY
(0-0-3)2

Software packages (with a menu driven basis) have to be developed for the topics covered in the earlier semesters.